"Motion in a Straight Line: Crash Course Physics #1":

1. The	use physics to figure out how fast you're moving through the world.				
2. Time, position, velocity, and acc	celeration are all linked togeth	ner via the	equations.		
3. Driving on a straight highway is	an example of d	imensional motion.			
4 tells you how	long you were driving for. Pos	sition lets you know where	you are or where you		
were. It can be	·				
5	is the way your position cha	anges over time. It's like s	peed, but it tells you		
which	you're moving in.				
6. Draw and label the graph of the given:	e three different scenarios	13			
A) You sat for 3 seconds, 4 meters	away from the light.	10			
B) You coasted at 1 m/s for 3 s.					
C) You are standing still, 4 m away	from the light, you hit the	× aa 7			
gas so that after 1 s you had gone	1 m, 4 m after 2 s, and 9 m	s s			
after 3 s.		1 1 2			
7. Velocity is the change in	over		6 7 8 9 10 11 12		
time and acceleration is the chang	ge in		seconds		
over time.			1		
8. The equation known as the "de	finition of acceleration" is		, where V		
is the initial velocity, and V is the i	nstantaneous velocity.				
9. When something is falling, the f	force of gravity is making the o	object accelerate at	m/s².		
10. The second kinematic equatio	n, the displacement curve equ	uation is	.		
11. Determine whether or not yo	u were speeding when the co	ps pulled you over. Show	your work.		

"Derivatives: Crash Course Physics #2":

1	is the language of physics.	
2. We describe change in mathematics t	hrough	·
3. In the new scenario, you don't know y	our acceleration, only how much your position is cha	nging over time. In
	nount of time you've been driving square, written as t	he equation
4. Limits are based on the idea that if vo	u have an equation on a graph, you can often	what
	y knowing what it looks like at the	
5. Limits are useful because they can hel	p predict what happens as we make intervals	·
An interval is just aaxis.	on a graph. The space between two poi	ints on the horizonta
equation is changing at any moment.	use infinitely intervals to figure o	
7. Velocity is the derivative of	and acceleration is the derivative of	·
8. The "power rule" is used for equation	s with variables raised to powers or exponents, as lor	ng as the exponent is
a The po	wer rule says that for these kinds of equations, to cal	culate the derivative
	number of that exponent and stick it	
9. What is the derivative of $x = 7t^6$?	$x = t^{1/2}$? $x = t^{-2}$? $x = t^{-2}$?	
10. The derivative of sin (x) is	The derivative of cos (x) is	.
	The derivative of –cos (x) is	
11. The derivative of e ^x is	no matter what.	
12. We can take a derivative of your velo	ocity and find your	

"Integrals: Crash Course Physics #3":

12. How high is the window? Show your work.

1. Integrals are basically the	of derivatives.
2. The force of gravity (g) accelerates the b	all downward at
3. Velocity is the derivative of	and acceleration is the derivative of
Inversely, velocity is the integral of accelera	ation and position is the integral of position. On a graph, velocity is
equal to the areath	he acceleration curve and position is equal to the area
the velocity curve.	
4. If you know that v = 2t, then you know the	hat's the derivative of the position. To find the equation for your
position, you just need to find an equation	whose derivative is 2t like x = 2t is the integral of
5. What is the integral of v = 42t ⁵ ?	
6. A is just a	numberANY number. The derivative of a constant is
A derivative is a rate of,	so a constant, by definition, doesn't change, and so will always have a
derivative of	
7. The integral of x = 2t is	Whatever the constant is equal to is where the curve
will intersect with the vertical axis.	
8. The	gives you the point where the graph intersects the vertical axis,
which is the value of 'C'.	
9. What is the velocity of the tennis ball? _	
10. We can get rid of the 'C' if we can figure	e out the velocity when time equals If we
write out our equation with V ₀ in it we get	·
11. Using the power rule, the integral of 'at	$\mathbf{t'}$ is and the integral of $\mathbf{V_0}$ is
Put them together and you'll end up with _	·

"Vectors and 2D Motion: Crash Course Physics #4":

1. In real life, when you need more than one direction, you turn to		·
2. Vectors are kind of like ordinary numbers – which are also known as	s scalars – because they h	ave a
, which tells you how big they are. Vectors	have another characteris	tic as well:
.	<u></u>	
3. Draw a vector that shows a baseball launched at a 30° angle from the horizontal with a starting velocity of 5 m/s in the space to the right.	8 7 6 5	
4. Draw a vector to represent the scenario Shini gives you if the catcher were to drop the ball.	V _Y (m/s) 4 3 2	
5. When you draw a vector, it's a lot like the	1	
of a right triangle.	-3 -2 -1 0 1 -1 -2	2 3 4 5 6 7 8 V _x (m/s)
6. You can describe a vector by writing the lengths of the two other	-4	
sides. They are so good at describing a vector that physicists call them $% \left\{ \mathbf{r}_{i}^{\mathbf{r}_{i}}\right\} =\mathbf{r}_{i}^{\mathbf{r}_{i}}$		
its		
V = 4.331 +	2.5J	HECTOR NOTATION
8. If you want to add or subtract two vectors, you just separate each o	f them into their	parts and
add or subtract each component separately.		
9. Changing a horizontal vector WILL WON'T affect its	s vertical component and	vice versa.
10. We can figure out how long it takes the pitched ball to hit the group	ind by ignoring the	component
We use thee	quation. The ball took	to hit the ground
11. If we talk about the ball's highest point, the vertical velocity HAS to	o be	By using the
equation we lea	arn that it took the ball	to reach its
maximum hoight		

"Newton's Laws: Crash Course Physics #5":

1. Newton's 1 st law is all about	, which is its tendency to keep doing what
t's doing. The 1^{st} law is stated that "an object in motion will rema	in in motion, and an object at rest will remain at
rest, unless acted upon by a	Essentially, to change a way something
moves, to give it, y	ou need a net force.
2. Newton's 2 nd law states that "	is equal to mass times acceleration", or, as an
equation, F _{net} =	
3. The most common case of a net force making something move	is the
4. The value of "g" ("small g") is	
5. We measure weight in	
6. Newton's 3 rd law states that "for every action there is an equal	and reation."
This just means that if you exert a force on an object, it exerts an	one back on you.
This is known as the normal force . "Normal", in this instance, just	means
And the normal force is always perpendicular to whatever surface	your object is resting on.
7. Things can because there's more going on	than just the action and reaction forces.
3. Draw and label a free body diagram for the box sitting on the gi	round:
9. The counteracting upward force that comes from the rope attached	ched to the box is called the
	6

10. On the picture to the right, draw in the forces at work.

11. How quickly is the elevator accelerating downward?

 $m_{\rm E} = 1000 kg$

"Friction: Crash Course Physics #6":

1. Without	it would l	oe tough to do a	lmost anyt	thing.	
2. There are two kinds of friction:		friction,	, which is t	he force that slows	the bookcase down
as it slides and	friction, t	the force that you have to overcome to get the bookcase moving			
in the first place.					
3. The force of kinetic friction is in the	SAME	OPPOSITE	directio	on of the movemen	t of the object.
4. Rougher materials have MORE	LESS	surfaces to ca	tch on eac	h other, which is wh	ny the bookcase will
be HARDER EASIER	to slide on the	wood floor than	if you'd tri	ed it on carpet. The	way this roughness
affects kinetic friction is called the coefficient	t of kinetic frict	ion.			
5. How hard the materials are pressed togeth	ner puts	MORE	LESS	of their surfaces i	n contact with each
other. That's where the	•			0	
	1010	2 0011103 1111			
6. The coefficient of kinetic friction is express	sed as	The equatio	n for kinet	ic friction is	·
7. Like kinetic friction, static friction is also a	resistive force. I	But not only can	its direction	on change – its	
can change too.		·		<u> </u>	
8. The coefficient of static friction is expresse	ed as		The equ	lation for the maxim	num force of static
friction is					
9. Draw the free body diagram for the box or the picture to the right.	n the ramp on				
10. To figure out if the box will slide down the	e ramp, we				
need to find out if the part of the gravitation					T.
it down the ramp,				1	
than the maximum static friction resisting it.					
<u> </u>					
11. What is the net force pushing the box do	wn the ramp?				
12. What is the maximum static friction?		X.			
13. Will the box slide down the ramp?	YES NO				

"Uniform Circular Motion: Crash Course Physics #7":

1. Uniform circular mo	otion is what hap	pens when an	ything moves along a circular path in a	way.
2. Things accelerate acceleration.	INWARD	OUTWARD	as they move in a circle. This is known a	is centripetal
3. Centrifugal accelera	ation IS	IS NOT	real.	
4. Most people can wi	thstand an accel	eration of	for 10 minutes.	
5. Uniform circular mo	otion has four ma	in quantities: _	, velocity, acceleration,	and
6. Velocity is never alc		circle, but rath	ner perpendicular to the radius of the circle	along a line called
7. Something moving i	in a straight line i	s going to	to move in a	a straight line
unless a force – one th	nat IS	ISN'T	balanced out by other forces – turns it.	
8. Centripetal accelera	ation is always di	rected towards	s the of the circ	ular path.
9. The	of t	he motion in a	circle is the amount of time it takes to cor	ne back around to
a starting point. It is re	epresented as	The	period of the motion of the centrifuge is _	·
10. How many revolut	ions the ride mal	kes in one seco	ond is its	The equation for
frequency is	·			
11. Circumference (C)	=		The circumference of the ride is	·
12. The speed equatio	on for uniform cir	cular motion is	: :	
_			equal to the change inits derivative. This equation turns out to b	
14. If you increase the the acceleration.	speed around th	ne path or decr	rease the radius of the circle, you will	
15. The acceleration o	f the riders woul	d be	.	
16. According to NASA	A, is the ride safe?	? YES	NO	

"Newtonian Gravity: Crash Course Physics #8":

1. When Newton was starting out, the	ere was already a concept of gravity in place.	TRUE	FALSE
2. Newton's Law of Universal Gravita	tion works well on a	scale.	
_	vitational force worked, it would probably behavioual to that objects mass times its acceleration.	ve like	
4. When an object is close to the Eart	h's surface, like an apple in a tree, gravity makes	s it accelerate at	about
5. Newton figured that the gravitation	nal force between two objects must get smaller	the further apa	rt they are.
More specifically, on the distance of t	he two objects	·	
6. The equation for the law of universal gravitation is 7. It was Henry Cavendish that figured out that G was equal to Nm²/kg².	force		pject #2 mass
	squ	ared	
8. Newton took his law of universal g	ravitation and applied it to	laws. Acco	ording to
Kepler, the orbits of the planets are _	(1 st law).	In Kepler's 2 nd l	aw, he tells
us that two "pizza" slices swept out o	f Earth's orbit will have the exact same	·	
9. From Newton's law of universal gra	avitation, the gravitational acceleration at Mars's	s surface should	l be

"Work, Energy, and Power: Crash Course Physics #9":

1. A	is whatever sec	tion of the universe you a	re talking about at the time.
2. The amount of v	work that you are doing is equal to	the	you are using times the
	that you move it. Wo	ork is most often expressed	d in units of
3. Physicists often	write the equation of work as		because it will fit any
scenario that invol	ves a constant force over any dista	nce.	
4. Joules are often	used as the units for	Work is jus	t a change in energy. One of the
ways to define ene	ergy is as the ability to do		
5. Kinetic energy is	the energy of	The equation for it is	
6. Potential energy	is energy that	be used to do	work. A common type is
gravitational pote	ntial energy: energy that comes fro	om the fact that	exists.
7. Gravitational po	tential energy can be calculated usi	ing the equation	
8. Use this equatio	n find the force of a spring using Ho	ooke's law:	To find the
potential energy o	f a spring you'd use the equation _		·
9. When someone	does work on a system, its	ch	anges.
10. A	system is or	ne that doesn't lose energ	y through work.
11. Average powe	r is defined as	over time and is	measured in Watts (J/s).
12. If we change th	ne power equation around we can s	say that power is the	applied to
something with a p	particular average velocity.		
13. Power is the be	est way to calculate how	move	es around in a circuit.

"Collisions: Crash Course Physics #10":

1. To figure out what happens when objects collide we'll	need to take into account two main qualities:
&	
2. What Newton really said in his second law was that an times its	
3. Momentum is often described as an object's	to remain in motion,
however it is technically it's mass times its	.
4, represented by a 'J the in momentum.	' is the integral of the net force on an object over time, or
5. In elastic collisions,	energy is neither created nor destroyed.
6. When kinetic energy isn't conserved in a collision you h	nave an collision.
7. No matter the collision,	will always be conserved.
8. A perfectly inelastic collision is what happens when ob	jectstogether.
9. The center of mass is basically the average	of all the mass in a system.
10. To calculate the center of mass, first pick a starting po	pint where x = Then, the center of mass will be
equal to the of each individual mass times	its distance from the starting point, all divided by the
total of the system.	
11. What is the center of mass of the system shown in th	Sophiv o

"Rotational Motion: Crash Course Physics #11":

1. Translational motion descries when an object moves through space but of	doesn't
2. Rotational motion isn't all that different from translational motion, howe	ever instead of positions there are
3. In translational motion, we tend to talk about position in terms of really want to know the object's angle, what we call	
4. The primary unit that physicists use with rotational motion is the	This unit
describes angles by telling us how much of that circumference is covered by	y a given angle. To convert any number
of degrees to radians you just the number of de	grees times pi and then divide that by
180.	
5. Rotational velocity is the measure of an object's change in angle. This is	known as (ω).
6. Tangential velocity is equal to the	times the radius.
7. Like circular motion, rotational motion can also be	when the rotation repeats
itself after a set amount of time, which is represented by capital '', also	called the period.
8 and angular velocity are really just	t two different ways to describe the
same thing, just with different units. 1 revolution = 2π . In order to convert f	from frequency to angular velocity, all
you need to do is multiply the frequency by	
9. The bottom of the wheel isn't moving at all because its total velocity is ed the tangential velocity, since they are moving in opposite the same of the control of	
wheel is moving relative to the ground we would call that	
10. Angular acceleration (α) is the derivative of the	As an object rotates each
point on it can accelerate in two different ways. Radial acceleration is anoth	ner term for
acceleration and can be found as $a_r = \underline{\hspace{1cm}}$. There is also to	angential acceleration which describes
whether an individual point on a rotating object is speeding up or slowing d	lown. It depends on the
between the point and the center of the rotati	ing object. It is found with the equation
a _{ton} =	

"Torque: Crash Course Physics #12":

1. Torque changes an object's		·			
2. A lot of the relationships and equations tha	it apply to forces a	apply to torque	in a		way.
3. When you open a door, the will generate and the more you'll change the	you p door's angular vel	oull on the hand locity.	dle, the	to	rque you
4. The distance (radius) between the force and torque.	d the axis of rotat	ion also affects	torque. A	longer radius	means
5. The between the applied	d force and the ra				
6. The equation for torque $(τ)$ is such that	torque T	perpend ford		ecolium	
7. In translational motion, the inertia of an ob	ject depends on _		·		
8. In rotational motion, the moment of inertia	a is such that:	moment of inertia	sum of	distance of ma from axis of rota	
9. Torques, like forces, have the ability to do _	·			squarea	
10. The more torque you apply while rotating	an object, the	MORE	LESS	work you do.	
11. Calculating the kinetic energy is pretty eas	tran	netic energy of slational motion rotational	of in	noment nertia	
12. Angular momentum (L) is just: L =				angular velo squared	city
13. You can't create or destroy angular mome	entum. It always h	as to go		·	
14. Which object makes it to the bottom of th	ie ramp first?				
15. Which object makes it to the bottom seco	nd?	wh	y?		

"Statics: Crash Course Physics #13":

1. Statics is the science of how ob	jects behave when they're not		<u>.</u>
2. Objects that aren't accelerating	g are said to be at equilibrium . This mean	s that there can be	on an object,
but there can't be	on it. Otherwise, tha	t net force would make th	ne object accelerate. For
an object to be in equilibrium, all	of the forces and torques on it have to _		·
3. Since the ladder isn't moving, v	ve know that the net torque on the ladde	er from the wall is	·
4. The force of the ladder from th	e wall is		
5. The horizontal component of th	ne force from the floor on the ladder is	THE SAME AS	DIFFERENT FROM
the force of the wall on t	he ladder.		
6. The	zone is where enough force is a	dded so that the object w	vill stretch or compress,
	too much force, the object may become	permanently deformed.	The force has reached the
7. The amount that an object stre	tches or compresses depends on:		
·	of the object.		
	the applied force.		
_	oss-section of the object: the	it is. the less i	t will stretch or compress.
The type of mat			
	(E) is a number that tells you how hard it	is to stretch or compress	a material based on its
stiffness. The higher the number,	the elastic it is.		
9. All of these factors (7 and 8) co	mbine into one equation:	llength elastic	stress (F) initial length
10. Stress and strain can be found by:	F force A cross section		change in long
11. Shrinking is what happens to a	an object when you apply a force to	parts o	f it.
12 The modulus (R) measure the stiffness of different mate	orials in water	

"Fluids at Rest: Crash Course Physics #14":

1. Anything that flows, liquid or	, is a fluid.		
2. When it comes to fluids, we mostly use	in ι	inits of	·
3. We can define pressure as P =	We measure it in unit	s of	_, or
4. The average air pressure at sea level is		Pa.	
5. There's an easy way to find the pressure at a certain depth:	Pressure P =	p gravi	by height
6. If you are swimming at the bottom of a 3 m de 0.25 m below the surface.	eep pool, you feel	Pa more	oressure than at
7 stat	es that if you apply pressure t	o a confined flui	d, the pressure in
every part of the fluid increases by that amount.			
8. If you apply 10,000 N of force to the side of a \mid	piston with an area of $1~{ m m}^2$, yo	ou would apply _	
of force to the right side piston that has an area 9. A manometer is ashaped tube with a fi		ns:	= Fout
10. The difference between atmospheric pressur		A_{in}	
tire is called	pressure.	<u> </u>	
11. Archimedes figured out that the volume of the volume.	ne water displaced by an obje	ct is	to that object's
12. The force pushing up on an object in a fluid t	hat counteracts the force of g	ravity is the	force.
13. According to Archimedes' Principle , the buo	yant force (F _B) =		·
14. If the buoyant force is greater than the force	of gravity, the object will	FLOAT	SINK

"Fluids in Motion: Crash Course Physics #15":

1. The study of the flow of fluids is called
2. If we assume that fluids are incompressible, we are assuming that their won't change.
3. One thing that doesn't change as the size of a pipe changes is the of the water
passing through any given area over a given time. This is call the flow rate and is the
same everywhere in the pipe.
4. Write the "equation of continuity":
5. You can rewrite the equation from #4 in terms of density, area, and volume as:
Since we are assuming the water is incompressible, the density is the same everywhere, thus we are looking at it
just in terms of area and velocity.
6. Bernoulli's Principle states that the a fluid's velocity is through a pipe, the the
pressure on the pipe's walls and vice versa.
7. Fill in the boxes to complete Bernoulli's equation:
pressure $ + \frac{1}{2} \rho + \rho \qquad y = a constant $ density height
8. When a fluid applies pressure and moves a volume of fluid that's downstream, it's doing
9. The second term of Bernoulli's equation is called energy density.
10. When you look at his equation piece by piece, you can see that Bernoulli was really just putting
into a special form that would be useful for fluids.
·
11. Torricelli's Theorem says that the of a fluid coming out of the spout is the
as the velocity of a single droplet of fluid that falls from the height of the surface of the fluid in the container. In
other words, the pressure that's pushing the fluid out of the spout gives it the same velocity that it would get
from the force of
12. In the barrel problem, if you get rid of the terms that you don't need, you end up with another equation that relates velocity, acceleration, and displacement, without considering time.

"Simple Harmonic Waves: Crash Course Physics #16":	
The answer to the problems with the Millennium Bridge lies in	·
2 harmonic motion is when oscillations follow a particular, consiste	nt pattern.
3. The points where the ball is not moving are the turning points. The distance from one turning p	oint to where
the system is at equilibrium is the	
4. The equation for the "moment of turning point", when all of the energy is potential energy is: _	
The energy is one half the spring constant times the amplitude squared.	
5. At the equilibrium point, the potential energy is and it kinetic energy is at a r	naximum. This
amount of energy can be calculated as	
5. Fill in the blanks to complete the equation for the maximum velocity of the ball on the spring:	
V max maximum velocity spring constant amplitude maximum mass	
5. Mathematically speaking, simple harmonic motion is very similar to	motion

- 7. The ______ is the number of revolutions the marble makes around the ring per second.
- 8. Fill in the blanks to complete the equation for finding the horizontal position of the ball on the spring:

- 9. For an object in simple harmonic motion, the graph of its position versus time is a ______.
- 10. Resonance can increase the amplitude of an oscillation by applying force at just the right ______.
- 11. The designers of the Millennium Bridge didn't account for VERTICAL

"Traveling Waves: Crash Course Physics #17":

1. Often, when something about the physical world changes, the information about that disturbance gradually moves _____, away from the source, in every direction. As the information travels, it makes a ______ shape. 2. Label the wave below with the following: crest, trough, amplitude. amplitude 3. If you multiply the wavelength (λ) by the frequency you get the wave's speed: V = _____ 4. The wave's speed only depends on the ______ its travelling through. 5. A wave is what happens when you move the end of the rope back and forth one time. One lonely crest travels through the rope. 6. A _____ wave is what happens when you keep moving the rope back and forth. 7. Sinusoidal waves are such that if your put them on a graph they'd look like the graph of ______. 8. In ______ waves, the oscillation is perpendicular to the direction the wave is travelling. 9. In ______ waves, the oscillation is parallel to the direction the wave is travelling. 10. All waves transport ______ when they travel. 11. A wave's energy is proportional to its ______ squared. 12. When the end of a rope is fixed, the wave will be reflected back, but as a ______, not a crest. 13. If you send two identical pulses along a rope, one from each end. When the two pulses overlap, they combine to make one crest with a higher amplitude. This is ______ interference. 14. If you do the same thing as #13, but this time one wave is a crest and the other is a trough, when they overlap

the rope will be flat as the waves cancel each other out. This is ______ interference.

"Sound: Crash Course Physics #18":

1. Sound is a that tra	vels through a	medium, like air	or water.
2. Sound is a	_wave.		
3. Physicists sometimes describe sound waves in term	ns of the mover	ment of particles	s in the air, what's known as a
wave. Sounds	waves also cau	ise the air to exp	and and compress, so they
are also referred to as	waves.		
4. Pitch can be high or low, and it corresponds to the			' of the wave. Air
that's vibrating more times per second will have a	HIGHER	LOWER	pitch.
5. Sounds that are too high in pitch for humans to hea	ar are called		
6. If you increase the	_ of a sound, yo	ou increase its lo	oudness.
7. Below picowatt per square meter, sou	ınds are just to	o soft for us to d	etect them. And although we
will hear sounds above a watt per square meter, they	tend to		_ our ears.
8. Generally a sound wave needs to have	times the ir	ntensity to sound	d twice as loud to us.
9. We use units called	to measure	sounds. It is a lo	garithmic scale, so each notch
on the scale is times more intens	e than the noto	ch below it.	
10. Fill in the boxes for the equation for determining	how many deci	bels a sound is:	
$\frac{decibel}{dB} = 10$	garithm -	intensity location intensity	
11. The rock concert (standing near the speakers) is _		dB.	
12. As a source of a sound moves toward you, the pit	ch increases. Th	his is known as t	he
This effect isn't only observed in sound, but		as well.	

"The Physics of Music: Crash Course Physics #19":

1. String instruments	work when a st	the air.			
2. Sound is a wave, a	longitudinal wa	ave. String, wave, and	brass instruments	s use a different kind of wave, a	
		This is a wa	eve that looks like	it isn't moving. Its	
may change, but it isr	n't travelling an	ywhere. They are the	result of reflectio	n and	<u></u> .
3. Standing waves wit	th different		correspond t	to different musical notes.	
4. Label the nodes an	d antinodes:	ha mare	Section (1974)	Thingurer recent things	
5. The nodes DO	DON'T	oscillate.			
6. The nature of the s	tanding waves	depends a lot on wha	at the	of these strings or pipes look li	ike.
7. The most basic kind	d of standing w	ave, with one peak th	nat moves from cre	est to trough is known as the	
		(1 st) harmonic. It's th	ne simplest standir	ng wave you can have, with the fewe	est
nodes. Other, more c	omplex standin	ig waves,		, build on the fundamental, addi	ng
a node and an antino	de.				
8. The fundamental a	nd the overton	es make up		Every node and antinode p	oaiı
added increases the h	narmonic.				
9. A standing wave's	frequency is exp	pressed as f=		. The frequency of the fundamental	
wave is best expresse	ed as f =		_•		
10. The frequency of	middle C on a p	oiano is		·	
11. A standing wave v	with two loose	ends is different from	one with two fixe	ed ends in that it has antinode	es.
and node					
12. In a standing wave	e with one fixed	d and one loose end (like in a pan flute)	has a at one end and	b
an	at th	e other. Because of t	his, a pipe with or	ne open end and one closed end can	' t
have	numb	ered harmonics.			

"Temperature: Crash Course Physics #20":

1. The cracks and grating t	hat you see in bridges are called	Why they are
there has to do with		:
2. At its most basic level, t	emperature is a measure of how much	is in a system.
3. The easiest way to figur	e out if there's a temperature difference l	between two systems is through heat transfer.
The	will ALWAYS transfer heat to th	ne system.
4. Usually an increase in to	emperature will make a solid	.
5. The equation used to de	escribe linear expansion is:	
6. The value of the coeffic	ent of linear expansion depends on the $_$	the object is made of.
7. The equation used to de	escribe volume expansion is:	
8. An ideal gas is made up	of lots of molecules that move around	-
9. According to Boyle's La	$ extbf{ extit{ extit{\extit{\extit{\extit{ extit{\extit{ extit{ extit{\extit{$	while keeping the temperature constant, the
volume of the gas will	and vice ver	rsa.
10. According to Charles' I	.aw, as you increase the temperature of a	gas, while keeping the pressure constant, the
volume of the gas will	and vice ver	rsa.
11. According to Gay-Luss	ac's Law, as you increase the temperature	e of a gas, while keeping the volume constant,
the pressure of the gas wi	l and vio	ce versa.
12. All three of these laws	can be combine into one, the ideal Gas L a	aw, which is
13. If you have 1 mole of a	gas then you have	molecules of it. 'R' is the
universal gas constant. It i	s J/(K mol).	
14. Solve the ideal gas law	for the number of moles	
15. How many moles of ai	r did you lose from your car, just because	it got warmer outside?

"Kinetic Theory and Phase Changes: Crash Course Physics #21":

calculate the _		of each particle	e. When you do the math, t	he equation for finding the
average kinetic	energy (KE _{ave}) of the ide	eal gases in a container is _		, where 'k' is the Boltzmanr
constant which	n can be determined as k	=	_·	
3. This equatio	n (#2) tells you how kine	tic energy and temperature	e are related in an ideal gas	: as the kinetic energy of the ga
increases, temp	perature	pro	portionately.	
4. We've been	talking about the velocit	ies of these ideal gas mole	cules as	To get the average
kinetic energy	we didn't just take the a	verage velocity and square	it, but rather we squared _	the individual velociti
and then took	the average of those squ	ared velocities.		
5. The square r	oot of the average squar	red velocity is known as the	e "	square speed". We write it a
V _{RMS} and it is	THE SAME AS	DIFFERENT FROM	the average speed.	
8. High pressur	re is a problem for gases	speed. because it forces molecule	eeds, but they are mostly neess	to the point where they sta
9. Label the ph	ase diagram for water w	ith solid, liquid,		PHASE DIAGRAM FOR WATER
10. The point a	it the top right is the crit		5-4	
maximum tem	perature and pressure w	here a gas can		
be a	·		0.006	
11. The point w	where the two lines inter	sect is the triple	0.00 0.01	100 374
point: it's the t	emperature and pressur	e at which a	T (°C)	
substance coex	kists as a	,, a	and a	
12. Below the t	triple point a substance o	cannot exist as a liquid. It c	an only go directly from a g	as to a solid, a process called
	e know, life needs			

"The Physics of Heat: Crash Course Physics #22":

1	is the m	easure of the avera	age kinetic energy of e	ach individual molecule in a
substance.				
2	(U) is	the kinetic energy	of all the molecules in	a system added together – as
opposed to tem	perature, which was a measure	of the average kine	etic energy for each mo	plecule.
3. To find the th	ermal energy of a system, you r	nultiple the averag	e kinetic energy by the	number of molecules. This equation
looks like this: _				
4. The amount	of thermal energy added to or re	emoved from a syst	em is	It's the energy that's
transferred bet	veen systems when they're at d	ifferent temperatu	res. In equations, it's r	epresented as ''. In the
official Internat	onal System of Units, it is measu	ured in units of	·	
5. How much th	e flow of heat changes the temp	perature of a syster	n depends on two thin	gs: how much it has and
the substance's		, which is	s a measure of how we	ell the substance stores heat.
the	ee main ways for heat to spread	ce.	L is the latent nea	at. It's the heat required to change
	, luction, heat flow depends on _			between molecules.
0	The thermal conductivity of a	material is represe	nted by the letter '	·
• In con	rection, warmer molecules move	e TOWARD	AWAY FROM	the heat source and are
replace	d by cooler molecules.			
• In radi	ation, heat is transferred by			waves.
0	The amount of heat an object	radiates over time	is proportional to its t	emperature to the
	power. If	you double the ter	mperature, you multip	y the heat it radiates over time by
	·			
0	Radiation also depends on the	material's		constant, which is
	based on the material's inhere	ent ability to radiat	e heat.	
	Itzmann equation describes hov ne. Fill in the blanks to complet	v rieat is	imount of heat ransferred	STEFAN-BOLTZMANN EQUATION stefan boltzmann temperature to

10. One of the main ways we lose body heat is via .

"Thermodynamics: Crash Course Physics #23":

1. Perpetual motion is in	mpossible.		TRUE	FAL	SE			
2. The goal of thermody	namics is	to describ	e the _			of energ	y. As a th	ermodynamic
system does work, it	LOSES	GAINS	heat. A	As work is done	on the system, it	LOSES	GAINS	heat.
3. The idea that the cha	nge in inte	rnal ener	gy is eq	ual to the chan	ge in work plus he	at is known	as the	law of
thermodynamics. We w	rite this la	w with th	is equat	ion:			It's imp	oortant to
remember that if heat t	ransferred	l into the	system,	heat is	POSITIVE	NEGAT	IVE	If work is done by
the system, then work i	S	POSITIV	/E	NEGATIVE				
4. The first law of therm	odynamic	s is just a	nother v	vay to describe	e the			·
5. In isovolumetric proc	esses,			is kept	constant while he	eat is added	or remove	ed. As you add heat,
temperature and pressu	ıre	INCREA	SES	DECREASES	The gas does	sn't do	·	
6. In isobarometric pro	cesses,			is k	ept constant while	heat is add	ed or rem	oved. Since the
volume of the container	can chan	ge, this pi	rocess ca	an do work. Th	e work done by an	isobaromet	ric proces	ss can be calculated
as			·					
7. In isothermal proces s				ic	kant constant whi	ilo the heat o	ar valuma	is changed years
slowly. They are similar								
Instead you need to tak		-		-		-	-	_
mstead you need to tak	c tile				_ or the pressure to	Titli Tespece	,o the ron	ue.
8. In adiabatic processe	s, no			is allow	ed to flow into or	out of the sy	stem, but	the gas can expand
or be compressed.								
9. According to the secc	ond law of	thermod	ynamics	s, heat will spo	ntaneously flow fr	om somethi	ng	to
something		but it wo	n't flow	from somethin	ng colder to somet	thing hotter	because c	of
	, whic	h is often	describ	ed as the inhe	rent disorder of a	system – the	more dis	ordered the system,
the		its e	ntropy.	In real life, ent	ropy can only			overall.
10. If the entropy of the	system d	ecreases,	then the	e entropy of th	e environment arc	ound it must		·
11. Entropy's tendency	to increase	e has to d	o with _			·		
12. In thermodynamics,	entropy is	related t	to		, bed	cause when	neat flows	s between systems,
their entropy increases.	Heat spor	ntaneousl	ly flows	from warmer s	ystems to cooler o	nes because	that lead	ls to an
	in enti	ору.						

"Engines: Crash Course Physics #24":

1. Heat engines, like steam engines, turn	energy into mechanical work.		
2. In the case of a heat engine, the change in thermal ener	rgy is, because it always		
returns to the temperature it started at.			
3. As a steam engine runs, it releases exhaust heat. The mo	ore exhaust heat it produces, the less		
the engine is, and the more you have to	put in for the same amount of work.		
4. The efficiency of an engine can be found using the equa	ntion		
5. In terms of input heat and exhaust heat, we can simply	use the equation for efficiency		
6. An ideal engine would be	- meaning you could run it backward, putting in work to		
transfer heat from something with a lower temperature to	something with a higher temperature. This kind of		
hypothetical engine is called a	_ engine.		
7. In the Carnot Cycle, the heat WILL WON'T	flow between areas of different temperatures.		
8. In a Carnot engine, the first process is	The temperature is constant, but		
heat is slowly added, allowing the gas's volume to expand	and the pressure decrease. The second process is		
The temperature drops	s while the heat remains constant, which also allows the		
volume to expand while the pressure drops. The third prod	cess is the opposite of the first one, but is also		
isothermal. The gas is	_ while the temperature is held constant. It releases		
heat and its pressure increases while its volume decreases	s. The last process is the opposite of the second and is		
again.			
9. The ideal efficiency can be found using the equation	.		
10. Carnot engines are very	because during those isothermal processes, the		
temperature has to be kept constant while heat is transfer	rred – which only works if the heat is transferred super		
slowly.			
11. For refrigerators, efficiency is looked at via the coefficiency	ent of performance (COP), which equals		
12. For an ideal fridge, the COP =			

"Electric Charge: Crash Course Physics #25": 1. _____ occurs when an object obtains a net amount of positive or negative electric charge, creating an imbalance that wants to be returned to equilibrium. 2. Like charges **REPEL ATTRACT** 3. Moving electrons are called ______ electrons. They reside in an atom's outer shell as electrons and are easily plucked off and carried around when acted upon by an 'outside force'. 4. Materials that are ______ let free electrons move freely around the solid. 5. An overall negative charge means that the object has **TOO MANY** TOO FEW electrons. 6. In the process of charging by friction, no new charges were created. This is known as the law of conservation of . It says that you can never create a net electric charge. Instead, charge can only from one place to another. 7. In the process of polarization, we've ______ the charge in order to create an imbalance of charge within in object. 8. Connecting a charged object to the ground creates a way for the charged object to leak that charge into the Earth. This is called ______. 9. The force on charged particles is measured in ______. To find it, we need to know the charge (q) in units of _____ (C). The charge (q) can have both positive and negative values. 1 electron has a charge of -1.6x10⁻¹⁹ C. This value is known as the _____ charge (e). 10. The equation for Coulomb's Law is ______. 11. Coulomb's constant (k) depends on medium surrounding the charges. This is mostly air, or maybe a vacuum, making the constant _____

12. What is the force between two negative charges that are 1 nanometer apart? _____

REPEL

ATTRACT

each other.

The answer is positive, meaning that the charges

"Electric Fields: Crash Course Physics #26":

1. Coulomb's l	aw tells us the gene	rated by two charged particles on one another.
2. An	is a measurabl	e effect generated by any charged object.
3. What is the	equation for an electric field created by a charg	ged object that relies solely on the point charge ('Q')?
4. Electric field	d lines are vectors that show the magnitude and	of the force exerted on
any nearby po	sitive test charge.	
5. One positive	ely charged particle and one negatively charged	particle that are a distance apart with an equal and
opposite magr	nitude of charge is known as an	We can add their
fields together	r to create a total electric field. This is the princi	ple known as
6. Four import	cant properties of electric field lines:	
1.	The field lines must be	to the direction of the field at any point.
2.	The greater the line density, the greater the _	of the field.
3.	The lines always start from	charged objects and end on negatively
	charged objects.	
4.	The lines must never	·
7. The pair of _l	plates shown in the model make up what is kno	wn as a They are
integral in elec	ctronic systems partly because they can	an electric charge.
8. When the n	et force is 0, the	must also be 0.
9. In the mode	el with the hollowed out shell with a single posit	ive particle, there IS ISN'T an
electric field in	nside the shell.	

"Voltage, Electric Energy, and Capacitors: Crash Course Physics #27":

1. Defibrillators work because of two main electrical principles	electric potential energy and
2. A charged object can have electric potential energy when it	's held in an
3. We can determine the amount of work done on a test charg	ge via the equation
4. Electric potential can be found via the equation V =	It depends on the electric field and
the position, but it does not depend on the	of the test charge. The units are Joules over
coulombs, or The electric pot	ential difference is also known as voltage .
5. Fill in the blanks for the equation provided: 6. When a capacitors plates store electric charge, they are actually storing 7. Capacitance, how much a capacitor is able to hold, is measured in units called	Coulomb's constant point charge point charge from charge
8. A dielectric is typically an	_ material, like plastic or glass, that is used to
increase capacitance.	
9. By inserting an insulating material into a capacitor, we can now hold MORE LESS charg	INCREASE DECREASE capacitance and e, and thus energy, for the same amount of voltage.
10. Fill in the blanks for the full equation for capacitance:	CAPACITANCE area of cach plate permittivity of free space
11. We can calculate the potential energy stored in a	_ A
field with the equation	
12. The amount of energy stored in the electric field is known as	dielectrie constant distance between plaiss

"Electric Current: Crash Course Physics #28":

1	is the total amount of char	ge passing through a v	vire over a period of time.
2. Electric charge flows from	voltage to _		voltage.
3. The voltaic cell uses chemical reaction	ns to create an electric pot	ential difference betwe	een two pieces of
different metals known as		When the two electroo	des are connected,
current begins to flow. Today	ор	erate under the same	principle as the first
voltaic cell.			
4. We can determine the current with t	he equation	It is r	neasured in coulombs per
second, or	·		
5. In a circuit, the flow of negatively cha	arged electrons in one direc	ction is	the flow of
positively charged particles in the oppo	site direction.		
6. Conventionally speaking, current flow	ws from the	terminal to the	terminal.
7. The impedance of the flow of electro	ons in a circuit is known as _	It i	s measured in Ohms (Ω).
8. Ohm's Law assumes that resistance i	s constant and expresses vo	oltage in the equation	-
9. If you can make certain conductive n	naterials extremely cold, yo	u can bring their resist	ance to zero. These
materials are known as			
10. Write the equation for electric pow	er:	Thes	e units are in
11. Power is a function of current throu	igh and	across a resisto	r.

12. What are two ways you can write the electric power equation?

"DC Resistors & Batteries: Crash Course Physics #29":

1. In direct curre	ent circuits, cur	rent flows cons	tantly out of a	battery in _		direction		
2. An ideal batte	ery provides a _			voltage to a	a circuit, pow	ered by it:	s conversion o	of
stored chemical	energy to elec	trical energy. So	cientists say th	at the batter	ry is a source	of		force.
3			is the real volt	age you get	when you me	easure the	actual voltag	;e
between the ter								
voltage with the	equation					·		
4. When at least	two resistors	are connected i	n the same pa	th, they are	connected in	series . Ar	ny devices	
connected in se	ries have	THE SAME	DIFFERENT	current	flowing throu	ıgh them,	however the	y
each have	THE SAME	DIFFERENT	voltages dro	pping acros	s them. Acco	rding to t	he conservati	on of
energy, the tota circuit.	l voltage suppl	ied to the syste	m is equal to t	he sum of		the volta	ge drops acro	ss the
5. When multipl		_		-	many branche	es from a s	single source,	they
6. The principle	known as the c	conservation of	charge states	that all the o	current flowir	ng to the j	unction wher	e the
path splits is		al	I the current fl	owing out o	f the same ju	nction.		
7. For every brai	nch in a paralle	l connection, th	e voltage is _		no ma	atter what	the resistanc	e is.
8. For a series co	onnection, the	current is	THE SAME	DIFFERE	NT for a	ll resistors	and the volta	age
drop changes. Fo	·	•	oltage is THE	SAME	DIFFERENT	for all	resistors and	the
9. The equivaler	nt resistance fo	r a parallel setu	p of resistors v	vill be		than ar	ny one of the	
resistors in the o	circuit.							
10. Any addition	nal branch in th	e parallel systei	n will serve to	INCREA	SE DECF	REASE	the total	
resistance of the	e system and	INCREASE	DECREASE	the amo	ount of currer	ıt through	the entire ci	cuit.
11. As you add n	nore bulbs in s	eries, the bright	ness INC	REASES	DECREASES	with e	ach additiona	l bulb.
12. The outlets i	n vour house a	re connected ir	SER	IES	PARALLEL.			

"Circuit Analysis: Crash Course Physics #30":

1. One of the best ways to understand how electricity works in a system is through	:
the process of breaking down a circuit into its key components and studying each one to see what it can tel	l you
about the others.	
2. When you have a large system, the goal is to simplify everything down to resistor which	will
have the equivalent resistance of these resistors combined.	
3. The 1 st step is to find the resistors in a series. You can collapse them down to a single resistor by their resistances.	
4. To find the equivalent resistance of the resistors in parallel, use the equation	·
5. What is the current in the circuit shown?	
6. If two resistors are in series, then the current flowing through them is THE SAME DIFFEREN	Γ.
7. Any two resistors in parallel have THE SAME A DIFFERENT voltage drop. The current through	each
branch, though, is THE SAME DIFFERENT.	
8. To measure voltage, use a tool called a and attach it in	·
9. To measure current, use a device called an and attach it in	

"Capacitors and Kirchhoff: Crash Course Physics #31":

1. The design of a circuit depends on the	of the sys	tem it operat	tes, and we need tools to
take any configuration into account.			
2. Kirchhoff's Junction Rule states that the	of all currents	s entering int	o a junction is equal to the
of all currents leaving a junction. Wh	nat goes in must come	out.	
3. Kirchhoff's Loop Rule states that the sum of all ch	anges in potential aro	und a loop ed	quals
4. The first step in using the junction rule in circuit ar	nalysis is to	al	the junctions. Then you
label all the different in	the diagram.		
5. In circuit analysis, you can draw a loop around any	part of a circuit wher	e you can im	agine a charged particle
heading around a circuit in a	and returning to wl	nere we start	ed. Wherever there's a
loop, we can use the	·		
6. If you want to know any of the voltage drops acros	ss the resistors, all you	ı'd have to is	the
resistance in question by the current running throug	h that resistor.		
7. In a DC circuit, a capacitor is useful for	charge tem	oorarily, then	releasing it again later on
8. With capacitors, we deal with transient conditions	s, or circuit responses	that	over time.
9. If you connect multiple capacitors connected in pa	rallel, the overall capa	icitance in th	e circuit
10. Capacitors connected in series will have a	LOWER H	GHER	overall capacitance.
11 For series canacitors, the combined canacitance i	is IFSS GREATER	than tl	ne weakest canacitor

"Magnetism: Crash Course Physics #32":

1. In 1820, Orsted demonstrated the connected between		and magneti	sm.
Only certain materials, especially those containing		, can be magnets.	
3. Magnetic field lines point from the	pole to the	pole.	
4. A fundamental principle of electromagnetism is that an ele	ectric current produces	a	field.
5. When a current runs through a wire, a magnetic field runs		it.	
6. The first right hand rule tells you that the direction your _		_ are pointing when curled	around a wire
(with the thumb of your right hand pointing in the direction of	of the electric current) is	s the direction of the magno	etic field lines.
7. The direction of the force from a magnetic field on a curre	nt running through a wi	re will be	to both the
magnetic field and the current.			
8. The second right hand rule lets you keep track of 3 direction	ons: the direction of the	e magnetic field, the current	t, and the
force. Point your right in the direction	n of the current, then p	oint your fingers so they are	e e
perpendicular to your palm – this represents the direction of	the	Your	
, perpendicular to your fingers, is the	direction of the force of	n the wire.	
		_	
9. Fill in the blanks for the equation for finding the magnetic force on a wire.		MAGNITUDE OF TH FROM A MAGNETIC	
10. The longer the wire, the the		curre	between ent and
force.	of force curre	length the mag	netic field
11. If the current is to the		Si	nθ
magnetic field lines, there won't be any force on the		magnetic	
wire at all.		field	
12. Currents are made up of electric cl	harges, so a magnetic fi	eld will exert a force on sing	gle electric
charges that pass through it. This is the concept that explains	s why Earth's magnetic f	field protects us from charg	ed particles
from the			
13. For a single charge, the force is WEAKER	STRONGER the o	closer to perpendicular the	charge's
velocity is to the magnetic field lines.			
14. For the third right hand rule , if the charged particle is		, then your thumb is po	oint in the
direction of the force. If the charge is	, then your t	humb is pointing in the dire	ection
onnosite the force			

"Ampère's Law: Crash Course Physics #33":

2. The basic logic bennit Ampere 3 law is that the	stronger the electric current, the	the
magnetic field is around it.		
3. The equation for Ampere's law (to the		AMPÈRE'S LAW
right), basically means that he total	angle between	
magnetic field along a loop is equal to		agnetic onstant
the running through		
the loop times a constant number.	$B \cos\theta ds =$	Po lenc
4. If we apply Ampere's Law to a long,	magnetic infinitesimal field element of the loop	current enclosed by the loop
straight wire, the total magnetic field	the toop	by the loop
along a circle surrounding the wire is equal to	·	
5. When two wires running parallel to each other		me direction, they
5. When two wires running parallel to each other were ATTRACTED TO REPELLED BY	had current running through them in the sar	
5. When two wires running parallel to each other were ATTRACTED TO REPELLED BY 6	had current running through them in the sar	
5. When two wires running parallel to each other were ATTRACTED TO REPELLED BY 6	had current running through them in the sar	
5. When two wires running parallel to each other were ATTRACTED TO REPELLED BY 6 6. A coil of wire is called a	had current running through them in the sareach other When it has a current running th	rough it, it
5. When two wires running parallel to each other	had current running through them in the sareach other. . When it has a current running the c field, the loop of wire turns because a	rough it, it

"Induction – An Introduction: Crash Course Physics #34":

1. Magnetic fields only	crate electric currents when the mag	netic field is		with time.
2. Faraday's Law of Ind	uction states that a changing magnet	cic field will induce	e an EMF – also k	nown as a
	in a loop of wire.			
3. Changing the	of the loop of wire induced	a current, too, an	d so did changing	g the
between the loop and t	the magnetic field. This was because o	of a property calle	d	
which is a measure of the	he magnetic field running through a l	oop of wire.		
4. There are three facto	ors that affect the magnetic field, and	therefore the ma	gnetic flux throu	gh the loop: the
of t	the magnetic field (B), the	of the loop (A	(), and the	(θ)
between the magnetic	field and a line perpendicular to the f	ace of the loop. P	utting all of these	factors together,
we find that the magne	tic flux (Φ _B) =		If the magnetic	flux increases ove
time, the EMF	·			
5. A change in the magr	netic flux through the coil, induces	THE SAME	A DIFFERENT	EMF in each loop
of the coil.				
6. Faraday's Law of Indu	uction lets us calculate how much EM	IF – and therefore	how much	
will be induced in a loop	p of a wire by a change in magnetic fl	ux.		
7. Lenx's Law states tha	at the magnetic field generated will b	e in the direction _.		the
change in magnetic flux	ζ.			
•	op of wire in or out of a magnetic fiel can be found with the equation:	d,	strength of magnetic field le	velocity of the loop
9. Your computer store	s information on your hard drive by		small se	ctions of the disk.

"How Power Gets to Your Home: Crash Course Physics #35":

1. Two of the most important steps in getting electricity to your house involve
and
2. Electric generators take mechanical energy and use to convert them to electrical energy.
3. Because the coil is rotating, the direction of the flow of the current changes every rotation.
This creates a type of flow of electricity known as current (AC).
4. The EMF induced in a coil rotating in a magnetic field can be found with the equation: Strength of magnetic field velocity angular velocity angular velocity
5. Transformers only work with
power. They are necessary because a problem with transporting electricity over long distances is that if the
voltages are low, a lot of electricity is wasted as
6. In the U.S., the power coming out of your walls is volts.
7. Mutual Inductance is where a change in the current in one coil leads to a change in EMF in a nearby coil and
EMF is the same as
8. In transformers, the power running through the first coil is
9. The voltage in the secondary coil divided by the voltage in the primary coil is equal to the number of
in the secondary coil divided by the number of loops in the primary coil.
10. A Telsa coil is a fancy version of a transformer.
11. Mutual inductance is also used in

"AC Circuits: Crash Course Physics #36":

1. We couldn't keep the lights on wi	ithout
2. Typically the	source in a DC circuit is unchanging, so the
will be unchanging too.	
3	means either maximum or minimum, positive or negative, since the flow of
current has the same magnitude.	
4. Fill in the boxes for the equation f	for current:
5. Fill in the boxes for the equation fin an AC circuit:	for average power average power
6. Power in AC circuits can better be	e described using
thes	squared values for
current and voltage.	
7 The constant	signifies how well a specific coil induces an opposing current
	s expressed in a unit called a
0	
8. As time goes to infinity you get cl	oser to the current value.
9. Inductors	a change in current, whether it's an increase or a decrease.
10. When the current is zero there i	is voltage and when current is maximum voltage is
11. When an AC circuit has an induc	ctor, the current and voltage are out of phase, which means they don't
at the same time	2 .
12. In summary: current in inductors	rsvoltage; current in resistors
voltage; current in capacitors	
13. The only thing in an AC circuit th	nat dissipates power as heat are the

"Maxwell's Equations: Crash Course Physics #37":

2. Maxwell's First Equation is a form of Gauss's Law which states that the electric flux through a closed surface is proportional to the enclosed by that surface. Mathematically, this equation looks like this (fill in the boxes):	electric field area of surface A permittivity of free space
3. Maxwell's Second Law is also a form of Gauss's Law, only with instead of electric flux. Mathematically, this equation looks like this (fill in the boxes):	magnetic area of surface — — — — — — — — — — — — — — — — — — —
4. Maxwell's Third Equation is Faraday's Law, just in a more general format. Mathematically, this equation looks like this (fill in the boxes):	$\int \frac{dectric}{field} \cdot \frac{ds}{ds} = -\frac{d\phi_B}{ds}$
5. Maxwell's Fourth Equation tweaks Ampere's Law by ac6. If a changing electric field is generated, then a	field is induced, which results in a
changing magnetic field that induces an called	field and the cycle continues. These oscillations are
7. The electric and magnetic fields always act	to each other.
8. The speed of every electromagnetic wave is	, which is the speed of light.
9. Our knowledge of electric and magnetic fields is thanks	s to Maxwell alone. TRUE FALSE

1. While coming up with his equations, Maxwell predicted the existence of _______.

"Geometric Optics: Crash Course Physics #38":

1. The core tenet of the ray model is that li	ight travels in	lir	ne paths called	'rays'.
2. If you view something in a reflection you	see its image in		·	
3. The law of reflection states that the ang angle of reflection.	le of incidence is		the	angle of incidence angle of reflection θ_1 θ_r
4. When light rays change from one mediu	m to another they bend	in a process called	d	
5. When a ray moves from air to water, the		g into the water w	vill be	Shell's law θ_1 θ_2 θ_2
6. Snell's law says that the angles of refrac	tion are determined by	the	of refra	action for each medium
and the angle of incidence. The higher the	index of refraction, the		the angle.	
7. An image is considered to be ayour eye or some other surface, like film. A converge, so your eyes construct an image mirror.	'	image is one	where the ligh	it rays don't actually
8. Warped pieces of material that form ima	ages of objects are called	d	·	
9. In a convex lens, rays that leave the lens	are angle toward the		axis, e	ventually converging at a
single point called the	point. The distanc	e between the len	ns and this poin	t is called the
length.				
10. When rays converge at a point, that me	eans a REAL	VIRTUAL	image has	been formed.
11. The distance	in the location where the	ne image forms on	the other side	of a converging lens.
12. Converging Lenses have THE SA	ME A DIFFERENT	focal length o	n both sides.	
13. For convex lenses, the image is always		·		
14. Diverging lenses have a	shapo	e and generate		images.
15. Magnification is the ratio of the		height to	the height of t	he actual object.

"Light is a Wave: Crash Course Physics #39":

1. We know that light is both a	and a	·
Huygens' Principle states that you can preposition.	edict a wave's position in t	the future by analyzing its
3. When waves are reshaped by obstacles, _		occurs.
4. Waves interact	when the crests (ar	nd troughs) of both waves end up in the
same spot. Waves interact	when one v	vave's crest run into another wave's trough
5. When light waves line up, they interfere	CONSTRUCTIVELY	DESTRUCTIVELY
6. The path difference is equal to the	betwee	en the center of each slit (d) multiplied by
the between the p	point on the screen and th	ne slits.
7. In waves, the intensity is proportional to t	he	squared. If you triple the
amplitude, the light gets as bri	ght.	
8. Light with a higher wavelength and shorte light with a higher frequency and shorter wa		
9. A total path difference of a full wavelengt	h means that for each ligh	nt ray coming through the slit at that angle,
there's a corresponding light ray that's shifte	ed by	_ a wavelength. When this happens,
interfere	ence is created.	
10. The places where the waves interfere de the waves interfere constructively create	structively create	The places where

"Spectra Interference: Crash Course Physics #40":

1. The pattern of lines that appear when you shine a ligh	t through a pair of thin slits depends on the spacing of the
slits and the light's	.
2. The more slits in a diffraction grating, the more	interference you can get
3. The patterns created using a diffraction grating are ca	led
4. A spectrum is a disti	nct pattern of lines at certain wavelengths that
correspond to the elemental composition of the cloud.	
5. When objects like the sun are heated up, they emit a	spectrum that covers a
wide range of wavelength. These things also contain	lines – characteristic
wavelengths of light that have been absorbed by the sar	ne elements that emitted them.
6. Different colors undergo constructive interference at	different
7. When light reflects off a surface that has a	index of refraction that the medium it travels
through, there is no phase shift and constructive interfer	ence occurs.
8. Light is a wave, meaning the	nat the wave travels in one direction and oscillates back
and forth in a direction that's perpendicular to the direction	ion of travel.
9. When a wave strikes an object, the effects of the char	ging electric field are felt in a direction that's
to the direction	n in which the wave is moving.
10. The filtering of light depending on its oscillation direct	ction is called
11. Polarized sunglasses have lenses that work as	polarizers.

"Optical Instruments: Crash Course Physics #41":

1. Your eyes function much like a camera. The			e	controls how much light enters the eye. The			
	is c	ontrolled by mus	scles that alter the fo	cal length in order to focus on objects	at varying		
distances. The	e	is	s the sensor that capt	tures the image, sending it to the brain	า.		
2. Your		is the c	losest distance at wh	ich your eye can focus on an object. If	f this point		
for you is fart	her than avera	ge (25 cm), you h	nave hyperopia, also	known as	·		
This can be re	emedied with c	orrective lenses	that are	lenses.			
3. Any simple	e magnifying gl	ass consists of a	single,	lens.			
4. In order to	find the magni	fying power of a	lens, you divided the	angle subtended by the	by		
the angle sub	tended by the		(by your ur	aided eye).			
5. The standa	rd refracting to	elescope uses a _		, converging lens for both the o	bjective		
lens and the e	eyepiece. Any o	objects viewed th	rough a refracting te	lescope are	·		
6. The Hubble	Space Telesco	pe is a		telescope, using mirrors as the o	bjective		
lens. The mirr	rors are		in shape.				
7. Since lense	s have edges, t	the incoming rays	s will always	and produce slight	ly blurred		
images.							
8. The ability	of a camera to	produces images	s of points very close	together is called			
For telescope	s and microsco	pes, the ability t	o resolve an image b	ecomes more difficult as the magnifica	ation		
becomes	HIGHER	LOWER	because the diffr	action patterns they create are magni	fied too.		

"Special Relativity: Crash Course Physics #42":

1. If your fri	en	d, Bob was travelling on a train through a vacuum at ha	alf the speed of	light, and his trai	n had a
headlight th	at,	to him, was travelling at the speed of light, how fast w	ould that light	appear to be mov	ing to you,
standing at	the	train station?			
2. But that (#1	can't happen because light is always travelling at the	speed of light i	n a vacuum from a	any
perspective	. Sc	o, from your point of view, that light from the train wo	uld look like it i	s moving at	the
speed of lig	ht.				
3. Special R	ela	tivity is special because it only applies to specific situat	tions where the	e different frames	of reference
aren't		They are called inertia	I reference fra	mes.	
4. Special re	lat	ivity is governed by two main postulates:			
	1.	The laws of physics are the	_ in all inertial	reference frames	
	2.	The speed of light in a vacuum is the	for a	II observers.	
5. Special re	lat	ivity tells us that when it comes to light, speed is alway	/s	, so	time and
distance mu	ıst	change. When time changes it's called		and when	distance
changes it's	ca	lled length contraction.			
6. From you	r p	erspective on the platform, the light has travelled a	LONGER	SHORTER	distance.
Since speed	is	constant, then the light must've been travelling for a	LONGER	SHORTER	time.
7. Length co	nt	raction means that if something is moving relative to y	ou, its length i	n the direction tha	it it's moving
will seem _		than it would if it wasn't moving.			
8. Length co	ntı	raction happens for things moving at regular speeds.	TRUE	FALSE	
9. Special re	lat	ivity tells us that because light always travels at the sai	me speed, time	dilates and lengt	h contracts
to compens	ate	and	are directly o	onnected to each	other.

"Quantum Mechanics – Part 1: Crash Course Physics #43":

1. Light behaves like a	It also behaves like a	·
2. A	is the idealized version of a radiating object.	They all incoming
light without reflecting any and r	adiate energy accordingly. You can predict the intensity	of the energy coming from a
blackbody (blackbody radiation)	based on its	
	cted that the higher the frequency, and therefore the sh	_
	e intensity. That matched up with experimental results r	
	range or higher. Blackbodies had a pea	
•	quency the light would be at its most intense. After that	•
	rincreased. The warmer the object, the	the frequency of the peak
intensity.		
4. The problem was solved with a	an equation now known as Planck's Law which says tha	t electromagnetic energy takes the
form of tiny, discreet packets call	led The energy of each qua	antum is equal to the frequency of
the light times Planck's constant.	This looks like E =	
5. Einstein argued that light energ	gy traveled in packets that we now call	which would essentially
make light behave like a particle.		
6. The	describes what happens	when you shine a beam of light on a
metal plate. Electrons leave the p	plate and hit a nearby collector, creating a current.	
7. Both the wave theory and the	particle theory of light predict that light knocks	out of the metal.
The wave theory say	ys that when a light wave hits an electron, it exerts a	on the
electron that ejects	it out of the metal. According to wave theory, the	of light
shouldn't make a di	fference, only the intensity matters.	
The particle theory	says that electrons get ejected from the metal when the	ey are hit by individual
The photon transfer	rs its energy to the electron, which pops out of the meta	al. The photon is destroyed. The
photon has a minim	num energy that it needs to transfer in order to get the o	electron to overcome it's attraction
to the metal. This e	nergy is called the(W_0).	
8. There is a cutoff frequency. Th	e higher the frequency is above the cutoff, the	the maximum kinetic
energy of the ejected electrons. I	Increasing the intensity of the light only affects the	of electrons
ejected.		
9. Photons really exist. Light trave	els in discrete packets and behaves like a	
10. In certain circumstances, ligh	t can behave like a particle. In others, it can behave like	a wave. This is known as the

"Quantum Mechanics – Part 2: Crash Course Physics #44":

Applying the wave-particle duality to	led to the development of a way to analyze the
behavior of tiny particles more accurately than ever bef	ore.
2. According to De Broglie, you can find the	of any bit of matter, as long as you know its
momentum. The easiest way to test this is by using	.
3. If all objects can have wavelengths, why don't we see	them?
4. What would be the wavelength of a 0.2 kg ball flying	through the air?
5. When quantum mechanics looks at the wave nature o	of matter, it's mostly concerned with the
that particles, like electrons or even atoms or molecules	s, will be in certain places at certain times.
6. You can use Schrödinger's equation to predict the pro	obability of finding a particle at any given point in space,
known as the	function. The diagrams of electron
clouds show the probability of finding an atom's	
7. Many physicists think that the electron is	in a specific place, unless you stop to look at
it. Instead, it's in all these	_ places at once. Once you observe or measure the
electron in some way, it's only in one place. Somehow, y	you measuring it forces it to be in one spot. The idea that
a particle can be in more than one state at one time is a	n example of quantum
8. The Heisenberg Uncertainty Principle states that no i	matter how good your measuring instrument is, you can
only know the position or momentum of a particle up to	o a certain level of After that, you
could get a better measurement of your electron's posit	tion, but you'd have a much less precise measure of its
Likewise, you could get a	better measurement of the electron's momentum, but
then you'd have to sacrifice some knowledge of its	·
9. Quantum physicists try to make the best of both worl	lds by describing things like electrons using what's known
as a a collection of wa	ves all added together.
10. There will always be an uncertainty that's at least ec	qual to constant divided by
four times pi.	
11 Quantum machanics talls us that there's a huilt in lin	mit to how much we can learn about

"Nuclear Physics: Crash Course Physics #45":

1. $E = mc^2$ essentially me	ans that matter can	be converted int		an	d vice versa.
2. The process by which	an element turns int	o an entirely diff	erent elemer	nt is called	
3. The atomic nucleus co	ntains positively cha	orged particles ca	ılled		and electrically
neutral					
4. Any two nuclei that ha	ive the same atomic	number but diff	erent mass ni	umbers are called	·
5. It's important to know	the masses of differ	rent nuclei, since	nuclear inte	actions are all abo	out
conversion.					
6. The total mass of a sta	ahle nucleus is alway	c	than	the total mass of t	he individual protons
and neutrons put togeth					
nucleus. That is the amo					
energy peaks around iro					
07 .	, ,			0, 0	
7. The		force	is the attracti	ve force that acts	between protons and
neutrons in a nucleus.					
8. When a nucleus is uns	table it can breakde	wn into a more	stable state ⁻	This docay of unst	ahla nuclai
accompanied by the emi					
accompanied by the enin	ssion or energetic pe	articles is known	us		·
9. There is three differen	it types of decay:				
•	decay is	released when	an unstable n	ucleus loses two 	protons and two
neutrons , be	ecoming a different o	element in the pr	ocess.		
o This	decay occurs becaus	se the parent nu	cleus is too	LARGE	SMALL
•	decay is	when an unstal	ole nucleus re	leases a beta part	icle, which is just an
electron.					
o In th	is decay, a neutron	changes into a _		, and a	an electron is emitted
in re	sponse.				
o This	type of decay is caus	sed by the		force. This force	alters:
the f	fundamental particle	es that make up p	protons and n	eutrons.	
•	decay is	s what results wh	nen a nucleus	emits high-power	red photons in what
are known a	s gamma rays.				
o Gam	ma rays have the	LOWEST	HIGHEST	penetrating	power.

"Astrophysics and Cosm	nology: Crash	Course Physics #46":			
1	stud	y the physics of celestial bodies	s, such as	planets, stars,	and galaxies.
2	stud	y the universe overall and ask o	questions	about the orig	gin of
everything, as well as its future	.				
3. A light-year is a unit of		, with one light year equa	iling the d	istance that li	ght would
travel in a vacuum in one year.	Light that come	es from the sun is		old.	
4. When we observe the stars,	we are seeing w	hat they look(ed) like in the	PAST	PRESENT	FUTURE
5. The phenomenon by which	the wavelength (of light from sources that are m	noving awa	ay from us in l	known as
	because light	waves that are longer are clos	er to the r	ed part of the	visible
spectrum.					
6. Edwin Hubble noted that ga	laxies that were	farther away from us were mo	ving away	FASTER S	LOWER
than those that are closer to u	s. It was also fou	nd that no matter where you a	re, all dist	ant galaxies a	ppear to be
moving TOWARD	AWAY FROM	you.			
7. Cosmic Microwave Backgrou	und Radiation, fir	rst discovered by Penzias and V	Vilson, is t	he leftover ra	diation from
the	It provides s	upport for the Big Bang Theory	and it tel	ls us a lot abo	ut the
of the	e early universe.				
8. If the universe were filled w	ith only matter a	and radiation, then the rate of e	expansion	would slow de	own. That's

not the case. Space is filled with a constant form of energy known as ______.

9. By current estimates, dark matter makes up $___$ % of the matter in the universe.